Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37237842

RESUMO

Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds. Recently, nsLTPs have been the focus of a plethora of research and reviews, providing a functional overview of their potential activity. The present work compiles relevant information on nsLTP omics and evolution, and it adds meta-analysis of nsLTPs, including: (1) genome-wide mining in 12 plant genomes not studied before; (2) latest common ancestor analysis (LCA) and expansion mechanisms; (3) structural proteomics, scrutinizing nsLTPs' three-dimensional structure/physicochemical characteristics in the context of nsLTP classification; and (4) broad nsLTP spatiotemporal transcriptional analysis using soybean as a study case. Combining a critical review with original results, we aim to integrate high-quality information in a single source to clarify unexplored aspects of this important gene/peptide family.

2.
Gene ; 823: 146377, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35231571

RESUMO

Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Vigna/genética , Processamento Alternativo , Motivos de Aminoácidos , Mapeamento Cromossômico , Secas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/genética , Regiões Promotoras Genéticas , Domínios Proteicos , RNA-Seq , Estresse Fisiológico
3.
Front Plant Sci ; 12: 667013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194450

RESUMO

The present work represents a pioneering effort, being the first to analyze genomic and transcriptomic data from Vigna unguiculata (cowpea) kinases. We evaluated the cowpea kinome considering its genome-wide distribution and structural characteristics (at the gene and protein levels), sequence evolution, conservation among Viridiplantae species, and gene expression in three cowpea genotypes under different stress situations, including biotic (injury followed by virus inoculation-CABMV or CPSMV) and abiotic (root dehydration). The structural features of cowpea kinases (VuPKs) indicated that 1,293 bona fide VuPKs covered 20 groups and 118 different families. The RLK-Pelle was the largest group, with 908 members. Insights on the mechanisms of VuPK genomic expansion and conservation among Viridiplantae species indicated dispersed and tandem duplications as major forces for VuPKs' distribution pattern and high orthology indexes and synteny with other legume species, respectively. K a /K s ratios showed that almost all (91%) of the tandem duplication events were under purifying selection. Candidate cis-regulatory elements were associated with different transcription factors (TFs) in the promoter regions of the RLK-Pelle group. C2H2 TFs were closely associated with the promoter regions of almost all scrutinized families for the mentioned group. At the transcriptional level, it was suggested that VuPK up-regulation was stress, genotype, or tissue dependent (or a combination of them). The most prominent families in responding (up-regulation) to all the analyzed stresses were RLK-Pelle_DLSV and CAMK_CAMKL-CHK1. Concerning root dehydration, it was suggested that the up-regulated VuPKs are associated with ABA hormone signaling, auxin hormone transport, and potassium ion metabolism. Additionally, up-regulated VuPKs under root dehydration potentially assist in a critical physiological strategy of the studied cowpea genotype in this assay, with activation of defense mechanisms against biotic stress while responding to root dehydration. This study provides the foundation for further studies on the evolution and molecular function of VuPKs.

4.
Genet Mol Biol ; 44(2): e20200424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34061138

RESUMO

Cenostigma pyramidale is a native legume of the Brazilian semiarid region which performs symbiotic association with arbuscular mycorrhizal fungi (AMF), being an excellent model for studying genes associated with tolerance against abiotic and biotic stresses. In RT-qPCR approach, the use of reference genes is mandatory to avoid incorrect interpretation of the relative expression. This study evaluated the stability of ten candidate reference genes (CRGs) from C. pyramidale root tissues under salt stress (three collection times) and associated with AMF (three different times of salinity). The de novo transcriptome was obtained via RNA-Seq sequencing. Three algorithms were used to calculate the stability of CRGs under different conditions: (i) global (Salt, Salt+AMF, AMF and Control, and collection times), (ii) only non-inoculated plants, and (iii) AMF (only inoculated plants). HAG2, SAC1, aRP3 were the most stable CRGs for global and AMF assays, whereas HAG2, SAC1, RHS1 were the best for salt stress assay. This CRGs were used to validate the relative expression of two up-regulated transcripts in Salt2h (RAP2-3 and PIN8). Our study provides the first set of reference genes for C. pyramidale under salinity and AMF, supporting future researches on gene expression with this species.

5.
Physiol Plant ; 173(4): 1463-1480, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33973275

RESUMO

Salinity stress has a significant impact on the gain of plant biomass. Our study provides the first root transcriptome of Cenostigma pyramidale, a tolerant woody legume from a tropical dry forest, under three different salt stress times (30 min, 2 h, and 11 days). The transcriptome was assembled using the RNA sequencing (RNA-Seq) de novo pipeline from GenPipes. We observed 932, 804, and 3157 upregulated differentially expressed genes (DEGs) and 164, 273, and 1332 downregulated DEGs for salt over 30 min, 2 h, and 11 days, respectively. For DEGs annotated with the Viridiplantae clade in the early stress periods, the response to salt stress was mainly achieved by stabilizing homeostasis of such ions like Na+ and K+ , signaling by Ca2+ , transcription factor modulation, water transport, and oxidative stress. For salt stress at 11 days, we observed a higher modulation of transcription factors including the WRKY, MYB, bHLH, NAC, HSF, and AP2-EREBP families, as well as DEGs involved in hormonal responses, water transport, sugar metabolism, proline, and reactive oxygen scavenging mechanisms. Five selected DEGs (K+ transporter, aquaporin, glutathione S-transferase, cyclic nucleotide-gated channel, and superoxide dismutase) were validated by qPCR. Our results indicated that C. pyramidale had an early perception of salt stress modulating ionic channels and transporters, and as the stress progressed, the focus turned to the antioxidant system, aquaporins, and complex hormone responses. The results of this first root transcriptome provide clues on how this native species modulate gene expression to achieve salt stress tolerance.


Assuntos
Fabaceae , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Estresse Salino
6.
Biochimie ; 186: 1-12, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33789147

RESUMO

Defensins are a prominent family of antimicrobial peptides. They play sophisticated roles in the defense against pathogens in all living organisms, but few works address their expression under different conditions and plant tissues. The present work prospected defensins of Manihot esculenta Crantz, popularly known as cassava. Five defensin candidates (MeDefs) were retrieved from the genome sequences and characterized. Considering chromosome distribution, only MeDef1 and 2 occupy adjacent positions in the same chromosome arm. All 3D structures had antiparallel ß-sheets, an α-helix, and amphipathic residues distributed throughout the peptides with a predominance of cationic surface charge. MeDefs expression was validated by RT-qPCR, including two stress types (biotic: fungus Macrophomina pseudophaseolina, and abiotic: mechanical injury) and a combination of both stresses (fungus+injury) in three different tissues (root, stem, and leaf). For this purpose, ten reference genes (RGs) were tested, and three were chosen to characterize MeDef expression. MeDef3 was up-regulated at roots in all stress situations tested. MeDef1 and MeDef5 were induced in leaves under biotic and abiotic stresses, but not in both stress types simultaneously. Only MeDef2 was down-regulated in the stem tissue also with biotic/abiotic combined stresses. These results indicate that although defensins are known to be responsive to pathogen infection, they may act as preformed defense or, still, have tissue or stress specificities. Aspects of their structure, stability and evolution are also discussed.


Assuntos
Defensinas , Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Estresse Fisiológico , Defensinas/biossíntese , Defensinas/química , Defensinas/genética , Perfilação da Expressão Gênica , Manihot/química , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
7.
Bioinform Biol Insights ; 14: 1177932220952739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32952397

RESUMO

Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.

8.
Plant Methods ; 14: 88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337949

RESUMO

BACKGROUND: Due to cowpea ability to fix nitrogen in poor soils and relative tolerance to drought and salt stresses, efforts have been directed to identifying genes and pathways that confer stress tolerance in this species. Real-time quantitative PCR (qPCR) has been widely used as the most reliable method to measure gene expression, due to its high accuracy and specificity. In the present study, nine candidate reference genes were rigorously tested for their application in normalization of qPCR data onto roots of four distinct cowpea accessions under two abiotic stresses: root dehydration and salt (NaCl, 100 mM). In addition, the regulation of four target transcripts, under the same referred conditions was also scrutinized. RESULTS: geNorm, NormFinder, BestKeeper, and ΔCt method results indicated a set of three statistically validated RGs for each stress condition: (I) root dehydration (actin, ubiquitin-conjugating enzyme E2 variant 1D, and a Phaseolus vulgaris unknown gene-UNK), and (II) salt (ubiquitin-conjugating enzyme E2 variant 1D, F-box protein, and UNK). The expression profile of the target transcripts suggests that flavonoids are important players in the cowpea response to the abiotic stresses analyzed, since chalcone isomerase and chalcone synthase were up-regulated in the tolerant and sensitive accessions. A lipid transfer protein also participates in the cowpea tolerance mechanisms to root dehydration and salt stress. The referred transcript was up-regulated in the two tolerant accessions and presented no differential expression in the sensitive counterparts. Chitinase B, in turn, generally related to plant defense, was an important target transcript under salt stress, being up-regulated at the tolerant, and down-regulated in the sensitive accession. CONCLUSIONS: Reference genes suitable for qPCR analyses in cowpea under root dehydration and salt stress were identified. This action will lead to a more accurate and reliable analysis of gene expression on this species. Additionally, the results obtained in this study may guide future research on gene expression in cowpea under other abiotic stress types that impose osmotic imbalance. The target genes analyzed, in turn, deserve functional evaluation due to their transcriptional regulation under stresses and biotechnological potential.

9.
Braz J Infect Dis ; 22(2): 129-136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29601791

RESUMO

INTRODUCTION: Biofilm production is an important mechanism for the survival of Pseudomonas aeruginosa and its relationship with antimicrobial resistance represents a challenge for patient therapeutics. P. aeruginosa is an opportunistic pathogen frequently associated to nosocomial infections, especially in imunocompromised hosts. OBJECTIVES: Analyze the phenotypic biofilm production in P. aeruginosa isolates, describe clonal profiles, and analyze quorum sensing (QS) genes and the occurrence of mutations in the LasR protein of non-biofilm producing isolates. METHODS: Isolates were tested for biofilm production by measuring cells adherence to the microtiter plates. Clonal profile analysis was carried out through ERIC-PCR, QS genes were by specific PCR. RESULTS: The results showed that 77.5% of the isolates were considered biofilm producers. The results of genotyping showed 38 distinct genetic profiles. As for the occurrence of the genes, 100% of the isolates presented the lasR, rhlI and rhlR genes, and 97.5%, presented the lasI gene. In this study nine isolates were not biofilm producers. However, all presented the QS genes. Amplicons related to genes were sequenced in three of the nine non-biofilm-producing isolates (all presenting different genetic similarity profile) and aligned to the sequences of those genes in P. aeruginosa strain PAO1 (standard biofilm-producing strain). Alignment analysis showed an insertion of three nucleotides (T, C and G) causing the addition of an amino acid valine in the sequence of the LasR protein, in position 53. CONCLUSION: The modeling of the resulting LasR protein showed a conformational change in its structure, suggesting that this might be the reason why these isolates are unable to produce biofilm.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Transativadores/genética , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/química , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Humanos , Reação em Cadeia da Polimerase/métodos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Transativadores/química
10.
Braz. j. infect. dis ; 22(2): 129-136, Mar.-Apr. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951633

RESUMO

ABSTRACT Introduction: Biofilm production is an important mechanism for the survival of Pseudomonas aeruginosa and its relationship with antimicrobial resistance represents a challenge for patient therapeutics. P. aeruginosa is an opportunistic pathogen frequently associated to nosocomial infections, especially in imunocompromised hosts. Objectives: Analyze the phenotypic biofilm production in P. aeruginosa isolates, describe clonal profiles, and analyze quorum sensing (QS) genes and the occurrence of mutations in the LasR protein of non-biofilm producing isolates. Methods: Isolates were tested for biofilm production by measuring cells adherence to the microtiter plates. Clonal profile analysis was carried out through ERIC-PCR, QS genes were by specific PCR. Results: The results showed that 77.5% of the isolates were considered biofilm producers. The results of genotyping showed 38 distinct genetic profiles. As for the occurrence of the genes, 100% of the isolates presented the lasR, rhlI and rhlR genes, and 97.5%, presented the lasI gene. In this study nine isolates were not biofilm producers. However, all presented the QS genes. Amplicons related to genes were sequenced in three of the nine non-biofilm-producing isolates (all presenting different genetic similarity profile) and aligned to the sequences of those genes in P. aeruginosa strain PAO1 (standard biofilm-producing strain). Alignment analysis showed an insertion of three nucleotides (T, C and G) causing the addition of an amino acid valine in the sequence of the LasR protein, in position 53. Conclusion: The modeling of the resulting LasR protein showed a conformational change in its structure, suggesting that this might be the reason why these isolates are unable to produce biofilm.


Assuntos
Humanos , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/microbiologia , Proteínas de Bactérias/genética , Transativadores/genética , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/química , Infecções por Pseudomonas/tratamento farmacológico , Proteínas de Bactérias/química , Transativadores/química , Reação em Cadeia da Polimerase/métodos , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
11.
Curr Protein Pept Sci ; 18(4): 294-310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27455974

RESUMO

Plants exhibit sensitive mechanisms to respond to environmental stresses, presenting some specific and non-specific reactions when attacked by pathogens, including organisms from different classes and complexity, as viroids, viruses, bacteria, fungi and nematodes. A crucial step to define the fate of the plant facing an invading pathogen is the activation of a compatible Resistance (R) gene, the focus of the present review. Different aspects regarding R-genes and their products are discussed, including pathogen recognition mechanisms, signaling and effects on induced and constitutive defense processes, splicing and post transcriptional mechanisms involved. There are still countless challenges to the complete understanding of the mechanisms involving R-genes in plants, in particular those related to the interactions with other genes of the pathogen and of the host itself, their regulation, acting mechanisms at transcriptional and post-transcriptional levels, as well as the influence of other types of stress over their regulation. A magnification of knowledge is expected when considering the novel information from the omics and systems biology.


Assuntos
Proteínas de Arabidopsis/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/imunologia , Genoma de Planta , Doenças das Plantas/imunologia , Plantas/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Etilenos/biossíntese , Etilenos/imunologia , Dosagem de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas/microbiologia , Plantas/parasitologia , Plantas/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Artigo em Inglês | MEDLINE | ID: mdl-27455973

RESUMO

Plant growth is prone to several unfavorable factors that may compromise or impair development and survival, including abiotic or biotic stressors. Aiming at defending themselves, plants have developed several strategies to survive and adapt to such adversities. Cyclotides are a family of plant-derived proteins that exhibit a diverse range of biological activities including antimicrobial and insecticidal activities that actively participate in plant defense processes. Three main categories of peptides have been described: (i) Cyclotides (ii) Sunflower Trypsin Inhibitor (SFTI) and (iii) peptides MCoTI-I and II, from Momordica cochinchinensis. They comprise proteins of approximately 30 amino acids, containing a head-to-tail cyclized backbone, with three disulfide bonds configured in a cystine knot topology, therefore bearing greater peptide stability. Given their features and multifunctionality, cyclotides stand out as promising sources for the discovery of new antimicrobial agents. The present review describes cyclotide occurrence, abundance and action in plants, also their and evolution. Considerations regarding their use in the context of biomedical and agronomical sciences uses are also presented.

13.
Genet Mol Biol ; 35(1 (suppl)): 335-47, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22802719

RESUMO

Physical maps are important tools to uncover general chromosome structure as well as to compare different plant lineages and species, helping to elucidate genome structure, evolution and possibilities regarding synteny and colinearity. The increasing production of sequence data has opened an opportunity to link information from mapping studies to the underlying sequences. Genome browsers are invaluable platforms that provide access to these sequences, including tools for genome analysis, allowing the integration of multivariate information, and thus aiding to explain the emergence of complex genomes. The present work presents a tutorial regarding the use of genome browsers to develop targeted physical mapping, providing also a general overview and examples about the possibilities regarding the use of Fluorescent In Situ Hybridization (FISH) using bacterial artificial chromosomes (BAC), simple sequence repeats (SSR) and rDNA probes, highlighting the potential of such studies for map integration and comparative genetics. As a case study, the available genome of soybean was accessed to show how the physical and in silico distribution of such sequences may be compared at different levels. Such evaluations may also be complemented by the identification of sequences beyond the detection level of cytological methods, here using members of the aquaporin gene family as an example. The proposed approach highlights the complementation power of the combination of molecular cytogenetics and computational approaches for the anchoring of coding or repetitive sequences in plant genomes using available genome browsers, helping in the determination of sequence location, arrangement and number of repeats, and also filling gaps found in computational pseudochromosome assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...